Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ \frac{tan(x)}{(1 + {x}^{2})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{tan(x)}{(x^{2} + 1)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{tan(x)}{(x^{2} + 1)}\right)}{dx}\\=&(\frac{-(2x + 0)}{(x^{2} + 1)^{2}})tan(x) + \frac{sec^{2}(x)(1)}{(x^{2} + 1)}\\=&\frac{-2xtan(x)}{(x^{2} + 1)^{2}} + \frac{sec^{2}(x)}{(x^{2} + 1)}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{-2xtan(x)}{(x^{2} + 1)^{2}} + \frac{sec^{2}(x)}{(x^{2} + 1)}\right)}{dx}\\=&-2(\frac{-2(2x + 0)}{(x^{2} + 1)^{3}})xtan(x) - \frac{2tan(x)}{(x^{2} + 1)^{2}} - \frac{2xsec^{2}(x)(1)}{(x^{2} + 1)^{2}} + (\frac{-(2x + 0)}{(x^{2} + 1)^{2}})sec^{2}(x) + \frac{2sec^{2}(x)tan(x)}{(x^{2} + 1)}\\=&\frac{8x^{2}tan(x)}{(x^{2} + 1)^{3}} + \frac{2tan(x)sec^{2}(x)}{(x^{2} + 1)} - \frac{4xsec^{2}(x)}{(x^{2} + 1)^{2}} - \frac{2tan(x)}{(x^{2} + 1)^{2}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return