There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ \frac{{x}^{3}}{(1 - x)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{x^{3}}{(-x + 1)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{x^{3}}{(-x + 1)}\right)}{dx}\\=&(\frac{-(-1 + 0)}{(-x + 1)^{2}})x^{3} + \frac{3x^{2}}{(-x + 1)}\\=&\frac{x^{3}}{(-x + 1)^{2}} + \frac{3x^{2}}{(-x + 1)}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{x^{3}}{(-x + 1)^{2}} + \frac{3x^{2}}{(-x + 1)}\right)}{dx}\\=&(\frac{-2(-1 + 0)}{(-x + 1)^{3}})x^{3} + \frac{3x^{2}}{(-x + 1)^{2}} + 3(\frac{-(-1 + 0)}{(-x + 1)^{2}})x^{2} + \frac{3*2x}{(-x + 1)}\\=&\frac{2x^{3}}{(-x + 1)^{3}} + \frac{6x^{2}}{(-x + 1)^{2}} + \frac{6x}{(-x + 1)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !