Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ ln(1 + \frac{sqrt(1 - {x}^{2})}{x})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = ln(\frac{sqrt(-x^{2} + 1)}{x} + 1)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( ln(\frac{sqrt(-x^{2} + 1)}{x} + 1)\right)}{dx}\\=&\frac{(\frac{-sqrt(-x^{2} + 1)}{x^{2}} + \frac{(-2x + 0)*\frac{1}{2}}{x(-x^{2} + 1)^{\frac{1}{2}}} + 0)}{(\frac{sqrt(-x^{2} + 1)}{x} + 1)}\\=&\frac{-sqrt(-x^{2} + 1)}{(\frac{sqrt(-x^{2} + 1)}{x} + 1)x^{2}} - \frac{1}{(\frac{sqrt(-x^{2} + 1)}{x} + 1)(-x^{2} + 1)^{\frac{1}{2}}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return