There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ ln(tan(sqrt({x}^{2} + 1)))\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = ln(tan(sqrt(x^{2} + 1)))\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( ln(tan(sqrt(x^{2} + 1)))\right)}{dx}\\=&\frac{sec^{2}(sqrt(x^{2} + 1))(\frac{(2x + 0)*\frac{1}{2}}{(x^{2} + 1)^{\frac{1}{2}}})}{(tan(sqrt(x^{2} + 1)))}\\=&\frac{xsec^{2}(sqrt(x^{2} + 1))}{(x^{2} + 1)^{\frac{1}{2}}tan(sqrt(x^{2} + 1))}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !