There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ sqrt(1 - {(ln(2x))}^{2})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = sqrt(-ln^{2}(2x) + 1)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( sqrt(-ln^{2}(2x) + 1)\right)}{dx}\\=&\frac{(\frac{-2ln(2x)*2}{(2x)} + 0)*\frac{1}{2}}{(-ln^{2}(2x) + 1)^{\frac{1}{2}}}\\=&\frac{-ln(2x)}{(-ln^{2}(2x) + 1)^{\frac{1}{2}}x}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !