There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ \frac{({x}^{2})}{(1 - x)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{x^{2}}{(-x + 1)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{x^{2}}{(-x + 1)}\right)}{dx}\\=&(\frac{-(-1 + 0)}{(-x + 1)^{2}})x^{2} + \frac{2x}{(-x + 1)}\\=&\frac{x^{2}}{(-x + 1)^{2}} + \frac{2x}{(-x + 1)}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{x^{2}}{(-x + 1)^{2}} + \frac{2x}{(-x + 1)}\right)}{dx}\\=&(\frac{-2(-1 + 0)}{(-x + 1)^{3}})x^{2} + \frac{2x}{(-x + 1)^{2}} + 2(\frac{-(-1 + 0)}{(-x + 1)^{2}})x + \frac{2}{(-x + 1)}\\=&\frac{2x^{2}}{(-x + 1)^{3}} + \frac{4x}{(-x + 1)^{2}} + \frac{2}{(-x + 1)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !