There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ x{(1 - \frac{x}{a})}^{\frac{1}{n}}dx\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = dx^{2}(\frac{-x}{a} + 1)^{\frac{1}{n}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( dx^{2}(\frac{-x}{a} + 1)^{\frac{1}{n}}\right)}{dx}\\=&d*2x(\frac{-x}{a} + 1)^{\frac{1}{n}} + dx^{2}((\frac{-x}{a} + 1)^{\frac{1}{n}}((0)ln(\frac{-x}{a} + 1) + \frac{(\frac{1}{n})(\frac{-1}{a} + 0)}{(\frac{-x}{a} + 1)}))\\=&2dx(\frac{-x}{a} + 1)^{\frac{1}{n}} - \frac{dx^{2}(\frac{-x}{a} + 1)^{\frac{1}{n}}}{(\frac{-x}{a} + 1)an}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !