There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ r{(1 - \frac{r}{a})}^{\frac{1}{n}}dr\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = r^{2}d(\frac{-r}{a} + 1)^{\frac{1}{n}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( r^{2}d(\frac{-r}{a} + 1)^{\frac{1}{n}}\right)}{dx}\\=&r^{2}d((\frac{-r}{a} + 1)^{\frac{1}{n}}((0)ln(\frac{-r}{a} + 1) + \frac{(\frac{1}{n})(0 + 0)}{(\frac{-r}{a} + 1)}))\\=&0\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !