There are 1 questions in this calculation: for each question, the 2 derivative of X is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ \frac{1}{sqrt(1 - {x}^{2})}\ with\ respect\ to\ X:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{1}{sqrt(-x^{2} + 1)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{1}{sqrt(-x^{2} + 1)}\right)}{dX}\\=&\frac{-(0 + 0)*\frac{1}{2}}{(-x^{2} + 1)(-x^{2} + 1)^{\frac{1}{2}}}\\=& - \frac{0}{2}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( - \frac{0}{2}\right)}{dX}\\=& - 0\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !