There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ ln(1 + {{e}^{2}}^{x})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = ln({e^{2}}^{x} + 1)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( ln({e^{2}}^{x} + 1)\right)}{dx}\\=&\frac{(({e^{2}}^{x}((1)ln(e^{2}) + \frac{(x)(2e*0)}{(e^{2})})) + 0)}{({e^{2}}^{x} + 1)}\\=&\frac{2{e^{2}}^{x}}{({e^{2}}^{x} + 1)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !