There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ ln(\frac{({e}^{x} + 1)}{2})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = ln(\frac{1}{2}{e}^{x} + \frac{1}{2})\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( ln(\frac{1}{2}{e}^{x} + \frac{1}{2})\right)}{dx}\\=&\frac{(\frac{1}{2}({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)})) + 0)}{(\frac{1}{2}{e}^{x} + \frac{1}{2})}\\=&\frac{{e}^{x}}{2(\frac{1}{2}{e}^{x} + \frac{1}{2})}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !