There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ {(1 - {x}^{2})}^{(\frac{3}{2})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = (-x^{2} + 1)^{\frac{3}{2}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( (-x^{2} + 1)^{\frac{3}{2}}\right)}{dx}\\=&(\frac{3}{2}(-x^{2} + 1)^{\frac{1}{2}}(-2x + 0))\\=&-3(-x^{2} + 1)^{\frac{1}{2}}x\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( -3(-x^{2} + 1)^{\frac{1}{2}}x\right)}{dx}\\=&-3(\frac{\frac{1}{2}(-2x + 0)}{(-x^{2} + 1)^{\frac{1}{2}}})x - 3(-x^{2} + 1)^{\frac{1}{2}}\\=&\frac{3x^{2}}{(-x^{2} + 1)^{\frac{1}{2}}} - 3(-x^{2} + 1)^{\frac{1}{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !