There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ sin(x) + \frac{1}{x} - 2ax\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( sin(x) + \frac{1}{x} - 2ax\right)}{dx}\\=&cos(x) + \frac{-1}{x^{2}} - 2a\\=&cos(x) - \frac{1}{x^{2}} - 2a\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( cos(x) - \frac{1}{x^{2}} - 2a\right)}{dx}\\=&-sin(x) - \frac{-2}{x^{3}} + 0\\=&-sin(x) + \frac{2}{x^{3}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !