There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (1 + x)(1 - {x}^{\frac{1}{3}})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = - x^{\frac{4}{3}} - x^{\frac{1}{3}} + x + 1\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( - x^{\frac{4}{3}} - x^{\frac{1}{3}} + x + 1\right)}{dx}\\=& - \frac{4}{3}x^{\frac{1}{3}} - \frac{\frac{1}{3}}{x^{\frac{2}{3}}} + 1 + 0\\=& - \frac{4x^{\frac{1}{3}}}{3} - \frac{1}{3x^{\frac{2}{3}}} + 1\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !