There are 1 questions in this calculation: for each question, the 3 derivative of a is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ third\ derivative\ of\ function\ a{e}^{x} - ln(x)\ with\ respect\ to\ a:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( a{e}^{x} - ln(x)\right)}{da}\\=&{e}^{x} + a({e}^{x}((0)ln(e) + \frac{(x)(0)}{(e)})) - \frac{0}{(x)}\\=&{e}^{x}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( {e}^{x}\right)}{da}\\=&({e}^{x}((0)ln(e) + \frac{(x)(0)}{(e)}))\\=&0\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( 0\right)}{da}\\=&0\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !