Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 3 derivative of e is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ third\ derivative\ of\ function\ a{e}^{x} - ln(x)\ with\ respect\ to\ e:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( a{e}^{x} - ln(x)\right)}{de}\\=&a({e}^{x}((0)ln(e) + \frac{(x)(1)}{(e)})) - \frac{0}{(x)}\\=&\frac{ax{e}^{x}}{e}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{ax{e}^{x}}{e}\right)}{de}\\=&\frac{ax*-{e}^{x}}{e^{2}} + \frac{ax({e}^{x}((0)ln(e) + \frac{(x)(1)}{(e)}))}{e}\\=&\frac{-ax{e}^{x}}{e^{2}} + \frac{ax^{2}{e}^{x}}{e^{2}}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( \frac{-ax{e}^{x}}{e^{2}} + \frac{ax^{2}{e}^{x}}{e^{2}}\right)}{de}\\=&\frac{-ax*-2{e}^{x}}{e^{3}} - \frac{ax({e}^{x}((0)ln(e) + \frac{(x)(1)}{(e)}))}{e^{2}} + \frac{ax^{2}*-2{e}^{x}}{e^{3}} + \frac{ax^{2}({e}^{x}((0)ln(e) + \frac{(x)(1)}{(e)}))}{e^{2}}\\=&\frac{2ax{e}^{x}}{e^{3}} - \frac{3ax^{2}{e}^{x}}{e^{3}} + \frac{ax^{3}{e}^{x}}{e^{3}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return