There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ a{e}^{x} - ln(x)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( a{e}^{x} - ln(x)\right)}{dx}\\=&a({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)})) - \frac{1}{(x)}\\=&a{e}^{x} - \frac{1}{x}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( a{e}^{x} - \frac{1}{x}\right)}{dx}\\=&a({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)})) - \frac{-1}{x^{2}}\\=&a{e}^{x} + \frac{1}{x^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !