Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ \frac{1}{(sin(30 + x)cos(x))}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{1}{sin(x + 30)cos(x)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{1}{sin(x + 30)cos(x)}\right)}{dx}\\=&\frac{-cos(x + 30)(1 + 0)}{sin^{2}(x + 30)cos(x)} + \frac{sin(x)}{sin(x + 30)cos^{2}(x)}\\=&\frac{-cos(x + 30)}{sin^{2}(x + 30)cos(x)} + \frac{sin(x)}{sin(x + 30)cos^{2}(x)}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{-cos(x + 30)}{sin^{2}(x + 30)cos(x)} + \frac{sin(x)}{sin(x + 30)cos^{2}(x)}\right)}{dx}\\=&\frac{--2cos(x + 30)(1 + 0)cos(x + 30)}{sin^{3}(x + 30)cos(x)} - \frac{-sin(x + 30)(1 + 0)}{sin^{2}(x + 30)cos(x)} - \frac{cos(x + 30)sin(x)}{sin^{2}(x + 30)cos^{2}(x)} + \frac{cos(x)}{sin(x + 30)cos^{2}(x)} + \frac{sin(x)*-cos(x + 30)(1 + 0)}{sin^{2}(x + 30)cos^{2}(x)} + \frac{sin(x)*2sin(x)}{sin(x + 30)cos^{3}(x)}\\=&\frac{2cos^{2}(x + 30)}{sin^{3}(x + 30)cos(x)} - \frac{sin(x)cos(x + 30)}{sin^{2}(x + 30)cos^{2}(x)} - \frac{sin(x)cos(x + 30)}{sin^{2}(x + 30)cos^{2}(x)} + \frac{2}{sin(x + 30)cos(x)} + \frac{2sin^{2}(x)}{sin(x + 30)cos^{3}(x)}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return