There are 1 questions in this calculation: for each question, the 1 derivative of t is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(sqrt(4{t}^{2} + 1) - 1)}{2}\ with\ respect\ to\ t:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{1}{2}sqrt(4t^{2} + 1) - \frac{1}{2}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{1}{2}sqrt(4t^{2} + 1) - \frac{1}{2}\right)}{dt}\\=&\frac{\frac{1}{2}(4*2t + 0)*\frac{1}{2}}{(4t^{2} + 1)^{\frac{1}{2}}} + 0\\=&\frac{2t}{(4t^{2} + 1)^{\frac{1}{2}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !