There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {(3{x}^{2} + 2x + 1)}^{5}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 243x^{10} + 810x^{9} + 1485x^{8} + 1800x^{7} + 1590x^{6} + 1052x^{5} + 530x^{4} + 200x^{3} + 55x^{2} + 10x + 1\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 243x^{10} + 810x^{9} + 1485x^{8} + 1800x^{7} + 1590x^{6} + 1052x^{5} + 530x^{4} + 200x^{3} + 55x^{2} + 10x + 1\right)}{dx}\\=&243*10x^{9} + 810*9x^{8} + 1485*8x^{7} + 1800*7x^{6} + 1590*6x^{5} + 1052*5x^{4} + 530*4x^{3} + 200*3x^{2} + 55*2x + 10 + 0\\=&2430x^{9} + 7290x^{8} + 11880x^{7} + 12600x^{6} + 9540x^{5} + 5260x^{4} + 2120x^{3} + 600x^{2} + 110x + 10\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !