There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ 0.086 - 0.086{\frac{1}{(1 + \frac{x}{0.017})}}^{1.36}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = - \frac{0.086}{(58.8235294117647x + 1)^{\frac{34}{25}}} + 0.086\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( - \frac{0.086}{(58.8235294117647x + 1)^{\frac{34}{25}}} + 0.086\right)}{dx}\\=& - 0.086(\frac{-1.36(58.8235294117647 + 0)}{(58.8235294117647x + 1)^{\frac{59}{25}}}) + 0\\=& - \frac{-6.88}{(58.8235294117647x + 1)^{\frac{59}{25}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !