Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ sqrt((\frac{sin(abs + x)}{(x - ln({x}^{e^{π}}))}))\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = sqrt(\frac{sin(abs + x)}{(x - ln({x}^{e^{π}}))})\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( sqrt(\frac{sin(abs + x)}{(x - ln({x}^{e^{π}}))})\right)}{dx}\\=&\frac{((\frac{-(1 - \frac{({x}^{e^{π}}((e^{π}*0)ln(x) + \frac{(e^{π})(1)}{(x)}))}{({x}^{e^{π}})})}{(x - ln({x}^{e^{π}}))^{2}})sin(abs + x) + \frac{cos(abs + x)(0 + 1)}{(x - ln({x}^{e^{π}}))})*\frac{1}{2}}{(\frac{sin(abs + x)}{(x - ln({x}^{e^{π}}))})^{\frac{1}{2}}}\\=&\frac{e^{π}sin^{\frac{1}{2}}(abs + x)}{2(x - ln({x}^{e^{π}}))^{\frac{3}{2}}x} + \frac{cos(abs + x)}{2(x - ln({x}^{e^{π}}))^{\frac{1}{2}}sin^{\frac{1}{2}}(abs + x)} - \frac{sin^{\frac{1}{2}}(abs + x)}{2(x - ln({x}^{e^{π}}))^{\frac{3}{2}}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return