There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ x + 2{x}^{2}sin(\frac{1}{x})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 2x^{2}sin(\frac{1}{x}) + x\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 2x^{2}sin(\frac{1}{x}) + x\right)}{dx}\\=&2*2xsin(\frac{1}{x}) + \frac{2x^{2}cos(\frac{1}{x})*-1}{x^{2}} + 1\\=&4xsin(\frac{1}{x}) - 2cos(\frac{1}{x}) + 1\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 4xsin(\frac{1}{x}) - 2cos(\frac{1}{x}) + 1\right)}{dx}\\=&4sin(\frac{1}{x}) + \frac{4xcos(\frac{1}{x})*-1}{x^{2}} - \frac{2*-sin(\frac{1}{x})*-1}{x^{2}} + 0\\=&4sin(\frac{1}{x}) - \frac{4cos(\frac{1}{x})}{x} - \frac{2sin(\frac{1}{x})}{x^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !