There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(1 + ln(x))}{x} - ({x}^{2} - 1)e^{x}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{ln(x)}{x} - x^{2}e^{x} + \frac{1}{x} + e^{x}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{ln(x)}{x} - x^{2}e^{x} + \frac{1}{x} + e^{x}\right)}{dx}\\=&\frac{-ln(x)}{x^{2}} + \frac{1}{x(x)} - 2xe^{x} - x^{2}e^{x} + \frac{-1}{x^{2}} + e^{x}\\=& - \frac{ln(x)}{x^{2}} - 2xe^{x} - x^{2}e^{x} + e^{x}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !