There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {e}^{sin((\frac{x}{a}) - cos(ax))}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = {e}^{sin(\frac{x}{a} - cos(ax))}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {e}^{sin(\frac{x}{a} - cos(ax))}\right)}{dx}\\=&({e}^{sin(\frac{x}{a} - cos(ax))}((cos(\frac{x}{a} - cos(ax))(\frac{1}{a} - -sin(ax)a))ln(e) + \frac{(sin(\frac{x}{a} - cos(ax)))(0)}{(e)}))\\=&\frac{{e}^{sin(\frac{x}{a} - cos(ax))}cos(\frac{x}{a} - cos(ax))}{a} + a{e}^{sin(\frac{x}{a} - cos(ax))}sin(ax)cos(\frac{x}{a} - cos(ax))\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !