There are 1 questions in this calculation: for each question, the 15 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ 15th\ derivative\ of\ function\ sin(1 - ({x}^{2} - ln(x)))\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = sin(-x^{2} + ln(x) + 1)\\\\ &\color{blue}{The\ 15th\ derivative\ of\ function:} \\=&-461260800xsin(-x^{2} + ln(x) + 1) - 205004800x^{3}cos(-x^{2} + ln(x) + 1) + 527155200xcos(-x^{2} + ln(x) + 1) - \frac{4118400cos(-x^{2} + ln(x) + 1)}{x} + \frac{219419200cos(-x^{2} + ln(x) + 1)}{x^{3}} - \frac{14414400sin(-x^{2} + ln(x) + 1)}{x^{3}} - 1568286720x^{5}sin(-x^{2} + ln(x) + 1) + 2767564800x^{3}sin(-x^{2} + ln(x) + 1) + 1079070720x^{7}cos(-x^{2} + ln(x) + 1) - 2736814080x^{5}cos(-x^{2} + ln(x) + 1) + \frac{120120000cos(-x^{2} + ln(x) + 1)}{x^{5}} + \frac{1316515200sin(-x^{2} + ln(x) + 1)}{x^{5}} + 279552000x^{9}sin(-x^{2} + ln(x) + 1) - 984023040x^{7}sin(-x^{2} + ln(x) + 1) - 32686080x^{11}cos(-x^{2} + ln(x) + 1) + 152821760x^{9}cos(-x^{2} + ln(x) + 1) - \frac{6598956000cos(-x^{2} + ln(x) + 1)}{x^{7}} + \frac{684684000sin(-x^{2} + ln(x) + 1)}{x^{7}} - \frac{3118388000cos(-x^{2} + ln(x) + 1)}{x^{9}} - \frac{26461344000sin(-x^{2} + ln(x) + 1)}{x^{9}} + \frac{79534182000cos(-x^{2} + ln(x) + 1)}{x^{11}} - \frac{10559094000sin(-x^{2} + ln(x) + 1)}{x^{11}} - 1720320x^{13}sin(-x^{2} + ln(x) + 1) + 10321920x^{11}sin(-x^{2} + ln(x) + 1) + 32768x^{15}cos(-x^{2} + ln(x) + 1) - 245760x^{13}cos(-x^{2} + ln(x) + 1) + \frac{23705058000cos(-x^{2} + ln(x) + 1)}{x^{13}} + \frac{159275844000sin(-x^{2} + ln(x) + 1)}{x^{13}} + \frac{26495469000sin(-x^{2} + ln(x) + 1)}{x^{15}} - \frac{159300557000cos(-x^{2} + ln(x) + 1)}{x^{15}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !