There are 1 questions in this calculation: for each question, the 5 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ 5th\ derivative\ of\ function\ {x}^{(1 - ln(x))}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = {x}^{(-ln(x) + 1)}\\\\ &\color{blue}{The\ 5th\ derivative\ of\ function:} \\=&\frac{26{x}^{(-ln(x) + 1)}ln^{2}(x)ln(x)}{x^{5}} - \frac{15{x}^{(-ln(x) + 1)}ln^{3}(x)ln(x)}{x^{5}} - \frac{15{x}^{(-ln(x) + 1)}ln^{2}(x)ln^{2}(x)}{x^{5}} - \frac{4{x}^{(-ln(x) + 1)}ln^{2}(x)ln^{3}(x)}{x^{5}} + \frac{65{x}^{(-ln(x) + 1)}ln(x)ln(x)}{x^{5}} - \frac{4{x}^{(-ln(x) + 1)}ln^{4}(x)ln(x)}{x^{5}} - \frac{6{x}^{(-ln(x) + 1)}ln^{3}(x)ln^{2}(x)}{x^{5}} - \frac{4{x}^{(-ln(x) + 1)}ln^{4}(x)ln(x)}{x^{5}} + \frac{19{x}^{(-ln(x) + 1)}ln(x)ln^{2}(x)}{x^{5}} - \frac{6{x}^{(-ln(x) + 1)}ln^{3}(x)ln^{2}(x)}{x^{5}} + \frac{26{x}^{(-ln(x) + 1)}ln^{2}(x)ln(x)}{x^{5}} - \frac{15{x}^{(-ln(x) + 1)}ln^{3}(x)ln(x)}{x^{5}} + \frac{19{x}^{(-ln(x) + 1)}ln(x)ln^{2}(x)}{x^{5}} - \frac{4{x}^{(-ln(x) + 1)}ln^{2}(x)ln^{3}(x)}{x^{5}} + \frac{65{x}^{(-ln(x) + 1)}ln(x)ln(x)}{x^{5}} - \frac{15{x}^{(-ln(x) + 1)}ln^{2}(x)ln^{2}(x)}{x^{5}} - \frac{5{x}^{(-ln(x) + 1)}ln(x)ln^{3}(x)}{x^{5}} - \frac{5{x}^{(-ln(x) + 1)}ln(x)ln^{3}(x)}{x^{5}} - \frac{{x}^{(-ln(x) + 1)}ln(x)ln^{4}(x)}{x^{5}} - \frac{{x}^{(-ln(x) + 1)}ln(x)ln^{4}(x)}{x^{5}} - \frac{24{x}^{(-ln(x) + 1)}ln(x)}{x^{5}} + \frac{65{x}^{(-ln(x) + 1)}ln^{2}(x)}{x^{5}} - \frac{5{x}^{(-ln(x) + 1)}ln^{4}(x)}{x^{5}} + \frac{15{x}^{(-ln(x) + 1)}ln^{3}(x)}{x^{5}} - \frac{{x}^{(-ln(x) + 1)}ln^{5}(x)}{x^{5}} + \frac{65{x}^{(-ln(x) + 1)}ln^{2}(x)}{x^{5}} + \frac{15{x}^{(-ln(x) + 1)}ln^{3}(x)}{x^{5}} - \frac{24{x}^{(-ln(x) + 1)}ln(x)}{x^{5}} - \frac{5{x}^{(-ln(x) + 1)}ln^{4}(x)}{x^{5}} - \frac{{x}^{(-ln(x) + 1)}ln^{5}(x)}{x^{5}} - \frac{70{x}^{(-ln(x) + 1)}}{x^{5}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !