Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{e^{-{(log_{10}^{x} - 3.756)}^{2}{\frac{1}{2}}^{2}}}{(sqrt(2 - 3.14)x*0.5261)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{1.900779319521e^{-0.5log_{10}^{x} + 1.878}}{xsqrt(-1.14)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{1.900779319521e^{-0.5log_{10}^{x} + 1.878}}{xsqrt(-1.14)}\right)}{dx}\\=&\frac{1.900779319521*-e^{-0.5log_{10}^{x} + 1.878}}{x^{2}sqrt(-1.14)} + \frac{1.900779319521e^{-0.5log_{10}^{x} + 1.878}(-0.5(\frac{(\frac{(1)}{(x)} - \frac{(0)log_{10}^{x}}{(10)})}{(ln(10))}) + 0)}{xsqrt(-1.14)} + \frac{1.900779319521e^{-0.5log_{10}^{x} + 1.878}*-*0*0.5*-1.14^{\frac{1}{2}}}{x(-1.14)}\\=&\frac{-1.900779319521e^{-0.5log_{10}^{x} + 1.878}}{x^{2}sqrt(-1.14)} - \frac{0.950389659760502e^{-0.5log_{10}^{x} + 1.878}}{x^{2}ln(10)sqrt(-1.14)}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return