There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{e^{\frac{-{(nx - 3.756)}^{2}{0.5261}^{2}}{2}}}{(sqrt(2*3.14)x*0.5261)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{1.900779319521e^{-0.26305nx + 0.9880158}}{xsqrt(6.28)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{1.900779319521e^{-0.26305nx + 0.9880158}}{xsqrt(6.28)}\right)}{dx}\\=&\frac{1.900779319521*-e^{-0.26305nx + 0.9880158}}{x^{2}sqrt(6.28)} + \frac{1.900779319521e^{-0.26305nx + 0.9880158}(-0.26305n + 0)}{xsqrt(6.28)} + \frac{1.900779319521e^{-0.26305nx + 0.9880158}*-*0*0.5*6.28^{\frac{1}{2}}}{x(6.28)}\\=&\frac{-1.900779319521e^{-0.26305nx + 0.9880158}}{x^{2}sqrt(6.28)} - \frac{0.5ne^{-0.26305nx + 0.9880158}}{xsqrt(6.28)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !