Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ log_{sqrt(2)}^{{x}^{x}}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( log_{sqrt(2)}^{{x}^{x}}\right)}{dx}\\=&(\frac{(\frac{(({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)})))}{({x}^{x})} - \frac{(0*\frac{1}{2}*2^{\frac{1}{2}})log_{sqrt(2)}^{{x}^{x}}}{(sqrt(2))})}{(ln(sqrt(2)))})\\=&\frac{ln(x)}{ln(sqrt(2))} + \frac{1}{ln(sqrt(2))}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return