There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ ln(\frac{{x}^{4}}{(1 + {x}^{4})})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = ln(\frac{x^{4}}{(x^{4} + 1)})\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( ln(\frac{x^{4}}{(x^{4} + 1)})\right)}{dx}\\=&\frac{((\frac{-(4x^{3} + 0)}{(x^{4} + 1)^{2}})x^{4} + \frac{4x^{3}}{(x^{4} + 1)})}{(\frac{x^{4}}{(x^{4} + 1)})}\\=&\frac{-4x^{3}}{(x^{4} + 1)} + \frac{4}{x}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !