There are 1 questions in this calculation: for each question, the 1 derivative of t is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {(\frac{tan(t)}{n})}^{\frac{1}{(n - 1)}}\ with\ respect\ to\ t:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = (\frac{tan(t)}{n})^{\frac{1}{(n - 1)}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( (\frac{tan(t)}{n})^{\frac{1}{(n - 1)}}\right)}{dt}\\=&((\frac{tan(t)}{n})^{\frac{1}{(n - 1)}}(((\frac{-(0 + 0)}{(n - 1)^{2}}))ln(\frac{tan(t)}{n}) + \frac{(\frac{1}{(n - 1)})(\frac{sec^{2}(t)(1)}{n})}{(\frac{tan(t)}{n})}))\\=&\frac{(\frac{tan(t)}{n})^{\frac{1}{(n - 1)}}sec^{2}(t)}{(n - 1)tan(t)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !