There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (ln(\frac{x}{e^{\frac{x}{e}}}))\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = ln(\frac{x}{e^{\frac{x}{e}}})\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( ln(\frac{x}{e^{\frac{x}{e}}})\right)}{dx}\\=&\frac{(\frac{1}{e^{\frac{x}{e}}} + \frac{x*-e^{\frac{x}{e}}(\frac{1}{e} + \frac{x*-0}{e^{2}})}{e^{{\frac{x}{e}}*{2}}})}{(\frac{x}{e^{\frac{x}{e}}})}\\=&\frac{1}{x} - \frac{1}{e}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !