There are 1 questions in this calculation: for each question, the 1 derivative of m is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(14sqrt(5)m - 55 - 10sqrt(-7{m}^{2} + 14sqrt(5)m))}{30}\ with\ respect\ to\ m:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{7}{15}msqrt(5) - \frac{1}{3}sqrt(14msqrt(5) - 7m^{2}) - \frac{11}{6}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{7}{15}msqrt(5) - \frac{1}{3}sqrt(14msqrt(5) - 7m^{2}) - \frac{11}{6}\right)}{dm}\\=&\frac{7}{15}sqrt(5) + \frac{7}{15}m*0*\frac{1}{2}*5^{\frac{1}{2}} - \frac{\frac{1}{3}(14sqrt(5) + 14m*0*\frac{1}{2}*5^{\frac{1}{2}} - 7*2m)*\frac{1}{2}}{(14msqrt(5) - 7m^{2})^{\frac{1}{2}}} + 0\\=&\frac{7sqrt(5)}{15} - \frac{7sqrt(5)}{3(14msqrt(5) - 7m^{2})^{\frac{1}{2}}} + \frac{7m}{3(14msqrt(5) - 7m^{2})^{\frac{1}{2}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !