Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (\frac{x}{e^{ln(\frac{x}{e})}})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{x}{e^{ln(\frac{x}{e})}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{x}{e^{ln(\frac{x}{e})}}\right)}{dx}\\=&\frac{1}{e^{ln(\frac{x}{e})}} + \frac{x*-e^{ln(\frac{x}{e})}(\frac{1}{e} + \frac{x*-0}{e^{2}})}{e^{{ln(\frac{x}{e})}*{2}}(\frac{x}{e})}\\=&0\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return