There are 1 questions in this calculation: for each question, the 4 derivative of o is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ {e^{o}}^{(ox + 1)}\ with\ respect\ to\ o:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = {e^{o}}^{(xo + 1)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {e^{o}}^{(xo + 1)}\right)}{do}\\=&({e^{o}}^{(xo + 1)}((x + 0)ln(e^{o}) + \frac{(xo + 1)(e^{o})}{(e^{o})}))\\=&x{e^{o}}^{(xo + 1)}ln(e^{o}) + xo{e^{o}}^{(xo + 1)} + {e^{o}}^{(xo + 1)}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( x{e^{o}}^{(xo + 1)}ln(e^{o}) + xo{e^{o}}^{(xo + 1)} + {e^{o}}^{(xo + 1)}\right)}{do}\\=&x({e^{o}}^{(xo + 1)}((x + 0)ln(e^{o}) + \frac{(xo + 1)(e^{o})}{(e^{o})}))ln(e^{o}) + \frac{x{e^{o}}^{(xo + 1)}e^{o}}{(e^{o})} + x{e^{o}}^{(xo + 1)} + xo({e^{o}}^{(xo + 1)}((x + 0)ln(e^{o}) + \frac{(xo + 1)(e^{o})}{(e^{o})})) + ({e^{o}}^{(xo + 1)}((x + 0)ln(e^{o}) + \frac{(xo + 1)(e^{o})}{(e^{o})}))\\=&x^{2}{e^{o}}^{(xo + 1)}ln^{2}(e^{o}) + 2x^{2}o{e^{o}}^{(xo + 1)}ln(e^{o}) + 2x{e^{o}}^{(xo + 1)}ln(e^{o}) + 2x{e^{o}}^{(xo + 1)} + x^{2}o^{2}{e^{o}}^{(xo + 1)} + 2xo{e^{o}}^{(xo + 1)} + {e^{o}}^{(xo + 1)}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( x^{2}{e^{o}}^{(xo + 1)}ln^{2}(e^{o}) + 2x^{2}o{e^{o}}^{(xo + 1)}ln(e^{o}) + 2x{e^{o}}^{(xo + 1)}ln(e^{o}) + 2x{e^{o}}^{(xo + 1)} + x^{2}o^{2}{e^{o}}^{(xo + 1)} + 2xo{e^{o}}^{(xo + 1)} + {e^{o}}^{(xo + 1)}\right)}{do}\\=&x^{2}({e^{o}}^{(xo + 1)}((x + 0)ln(e^{o}) + \frac{(xo + 1)(e^{o})}{(e^{o})}))ln^{2}(e^{o}) + \frac{x^{2}{e^{o}}^{(xo + 1)}*2ln(e^{o})e^{o}}{(e^{o})} + 2x^{2}{e^{o}}^{(xo + 1)}ln(e^{o}) + 2x^{2}o({e^{o}}^{(xo + 1)}((x + 0)ln(e^{o}) + \frac{(xo + 1)(e^{o})}{(e^{o})}))ln(e^{o}) + \frac{2x^{2}o{e^{o}}^{(xo + 1)}e^{o}}{(e^{o})} + 2x({e^{o}}^{(xo + 1)}((x + 0)ln(e^{o}) + \frac{(xo + 1)(e^{o})}{(e^{o})}))ln(e^{o}) + \frac{2x{e^{o}}^{(xo + 1)}e^{o}}{(e^{o})} + 2x({e^{o}}^{(xo + 1)}((x + 0)ln(e^{o}) + \frac{(xo + 1)(e^{o})}{(e^{o})})) + x^{2}*2o{e^{o}}^{(xo + 1)} + x^{2}o^{2}({e^{o}}^{(xo + 1)}((x + 0)ln(e^{o}) + \frac{(xo + 1)(e^{o})}{(e^{o})})) + 2x{e^{o}}^{(xo + 1)} + 2xo({e^{o}}^{(xo + 1)}((x + 0)ln(e^{o}) + \frac{(xo + 1)(e^{o})}{(e^{o})})) + ({e^{o}}^{(xo + 1)}((x + 0)ln(e^{o}) + \frac{(xo + 1)(e^{o})}{(e^{o})}))\\=&x^{3}{e^{o}}^{(xo + 1)}ln^{3}(e^{o}) + 3x^{3}o{e^{o}}^{(xo + 1)}ln^{2}(e^{o}) + 3x^{2}{e^{o}}^{(xo + 1)}ln^{2}(e^{o}) + 6x^{2}{e^{o}}^{(xo + 1)}ln(e^{o}) + 3x^{3}o^{2}{e^{o}}^{(xo + 1)}ln(e^{o}) + 6x^{2}o{e^{o}}^{(xo + 1)}ln(e^{o}) + 6x^{2}o{e^{o}}^{(xo + 1)} + 3x{e^{o}}^{(xo + 1)}ln(e^{o}) + 6x{e^{o}}^{(xo + 1)} + x^{3}o^{3}{e^{o}}^{(xo + 1)} + 3x^{2}o^{2}{e^{o}}^{(xo + 1)} + 3xo{e^{o}}^{(xo + 1)} + {e^{o}}^{(xo + 1)}\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( x^{3}{e^{o}}^{(xo + 1)}ln^{3}(e^{o}) + 3x^{3}o{e^{o}}^{(xo + 1)}ln^{2}(e^{o}) + 3x^{2}{e^{o}}^{(xo + 1)}ln^{2}(e^{o}) + 6x^{2}{e^{o}}^{(xo + 1)}ln(e^{o}) + 3x^{3}o^{2}{e^{o}}^{(xo + 1)}ln(e^{o}) + 6x^{2}o{e^{o}}^{(xo + 1)}ln(e^{o}) + 6x^{2}o{e^{o}}^{(xo + 1)} + 3x{e^{o}}^{(xo + 1)}ln(e^{o}) + 6x{e^{o}}^{(xo + 1)} + x^{3}o^{3}{e^{o}}^{(xo + 1)} + 3x^{2}o^{2}{e^{o}}^{(xo + 1)} + 3xo{e^{o}}^{(xo + 1)} + {e^{o}}^{(xo + 1)}\right)}{do}\\=&x^{3}({e^{o}}^{(xo + 1)}((x + 0)ln(e^{o}) + \frac{(xo + 1)(e^{o})}{(e^{o})}))ln^{3}(e^{o}) + \frac{x^{3}{e^{o}}^{(xo + 1)}*3ln^{2}(e^{o})e^{o}}{(e^{o})} + 3x^{3}{e^{o}}^{(xo + 1)}ln^{2}(e^{o}) + 3x^{3}o({e^{o}}^{(xo + 1)}((x + 0)ln(e^{o}) + \frac{(xo + 1)(e^{o})}{(e^{o})}))ln^{2}(e^{o}) + \frac{3x^{3}o{e^{o}}^{(xo + 1)}*2ln(e^{o})e^{o}}{(e^{o})} + 3x^{2}({e^{o}}^{(xo + 1)}((x + 0)ln(e^{o}) + \frac{(xo + 1)(e^{o})}{(e^{o})}))ln^{2}(e^{o}) + \frac{3x^{2}{e^{o}}^{(xo + 1)}*2ln(e^{o})e^{o}}{(e^{o})} + 6x^{2}({e^{o}}^{(xo + 1)}((x + 0)ln(e^{o}) + \frac{(xo + 1)(e^{o})}{(e^{o})}))ln(e^{o}) + \frac{6x^{2}{e^{o}}^{(xo + 1)}e^{o}}{(e^{o})} + 3x^{3}*2o{e^{o}}^{(xo + 1)}ln(e^{o}) + 3x^{3}o^{2}({e^{o}}^{(xo + 1)}((x + 0)ln(e^{o}) + \frac{(xo + 1)(e^{o})}{(e^{o})}))ln(e^{o}) + \frac{3x^{3}o^{2}{e^{o}}^{(xo + 1)}e^{o}}{(e^{o})} + 6x^{2}{e^{o}}^{(xo + 1)}ln(e^{o}) + 6x^{2}o({e^{o}}^{(xo + 1)}((x + 0)ln(e^{o}) + \frac{(xo + 1)(e^{o})}{(e^{o})}))ln(e^{o}) + \frac{6x^{2}o{e^{o}}^{(xo + 1)}e^{o}}{(e^{o})} + 6x^{2}{e^{o}}^{(xo + 1)} + 6x^{2}o({e^{o}}^{(xo + 1)}((x + 0)ln(e^{o}) + \frac{(xo + 1)(e^{o})}{(e^{o})})) + 3x({e^{o}}^{(xo + 1)}((x + 0)ln(e^{o}) + \frac{(xo + 1)(e^{o})}{(e^{o})}))ln(e^{o}) + \frac{3x{e^{o}}^{(xo + 1)}e^{o}}{(e^{o})} + 6x({e^{o}}^{(xo + 1)}((x + 0)ln(e^{o}) + \frac{(xo + 1)(e^{o})}{(e^{o})})) + x^{3}*3o^{2}{e^{o}}^{(xo + 1)} + x^{3}o^{3}({e^{o}}^{(xo + 1)}((x + 0)ln(e^{o}) + \frac{(xo + 1)(e^{o})}{(e^{o})})) + 3x^{2}*2o{e^{o}}^{(xo + 1)} + 3x^{2}o^{2}({e^{o}}^{(xo + 1)}((x + 0)ln(e^{o}) + \frac{(xo + 1)(e^{o})}{(e^{o})})) + 3x{e^{o}}^{(xo + 1)} + 3xo({e^{o}}^{(xo + 1)}((x + 0)ln(e^{o}) + \frac{(xo + 1)(e^{o})}{(e^{o})})) + ({e^{o}}^{(xo + 1)}((x + 0)ln(e^{o}) + \frac{(xo + 1)(e^{o})}{(e^{o})}))\\=&x^{4}{e^{o}}^{(xo + 1)}ln^{4}(e^{o}) + 4x^{4}o{e^{o}}^{(xo + 1)}ln^{3}(e^{o}) + 4x^{3}{e^{o}}^{(xo + 1)}ln^{3}(e^{o}) + 12x^{3}{e^{o}}^{(xo + 1)}ln^{2}(e^{o}) + 6x^{4}o^{2}{e^{o}}^{(xo + 1)}ln^{2}(e^{o}) + 12x^{3}o{e^{o}}^{(xo + 1)}ln^{2}(e^{o}) + 24x^{3}o{e^{o}}^{(xo + 1)}ln(e^{o}) + 6x^{2}{e^{o}}^{(xo + 1)}ln^{2}(e^{o}) + 24x^{2}{e^{o}}^{(xo + 1)}ln(e^{o}) + 4x{e^{o}}^{(xo + 1)}ln(e^{o}) + 4x^{4}o^{3}{e^{o}}^{(xo + 1)}ln(e^{o}) + 12x^{3}o^{2}{e^{o}}^{(xo + 1)}ln(e^{o}) + 12x^{2}o{e^{o}}^{(xo + 1)}ln(e^{o}) + 12x^{3}o^{2}{e^{o}}^{(xo + 1)} + 24x^{2}o{e^{o}}^{(xo + 1)} + 12x^{2}{e^{o}}^{(xo + 1)} + 12x{e^{o}}^{(xo + 1)} + x^{4}o^{4}{e^{o}}^{(xo + 1)} + 4x^{3}o^{3}{e^{o}}^{(xo + 1)} + 6x^{2}o^{2}{e^{o}}^{(xo + 1)} + 4xo{e^{o}}^{(xo + 1)} + {e^{o}}^{(xo + 1)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !