There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {e}^{x}(ax + 1)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = ax{e}^{x} + {e}^{x}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( ax{e}^{x} + {e}^{x}\right)}{dx}\\=&a{e}^{x} + ax({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)})) + ({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))\\=&a{e}^{x} + ax{e}^{x} + {e}^{x}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !