There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ ln(\frac{3}{x}) + ({x}^{(e + 0 + 2x + 7)})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = ln(\frac{3}{x}) + {x}^{(e + 2x + 7)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( ln(\frac{3}{x}) + {x}^{(e + 2x + 7)}\right)}{dx}\\=&\frac{3*-1}{(\frac{3}{x})x^{2}} + ({x}^{(e + 2x + 7)}((0 + 2 + 0)ln(x) + \frac{(e + 2x + 7)(1)}{(x)}))\\=&\frac{{x}^{(e + 2x + 7)}e}{x} + 2{x}^{(e + 2x + 7)}ln(x) + \frac{7{x}^{(e + 2x + 7)}}{x} + 2{x}^{(e + 2x + 7)} - \frac{1}{x}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !