There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ xln(x) - \frac{{x}^{3}}{3} + \frac{{x}^{2}}{2} - x + 1\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = xln(x) - \frac{1}{3}x^{3} + \frac{1}{2}x^{2} - x + 1\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( xln(x) - \frac{1}{3}x^{3} + \frac{1}{2}x^{2} - x + 1\right)}{dx}\\=&ln(x) + \frac{x}{(x)} - \frac{1}{3}*3x^{2} + \frac{1}{2}*2x - 1 + 0\\=&ln(x) - x^{2} + x\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( ln(x) - x^{2} + x\right)}{dx}\\=&\frac{1}{(x)} - 2x + 1\\=&\frac{1}{x} - 2x + 1\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !