There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (x - 2){e}^{x} + a{(x - 1)}^{2}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x{e}^{x} - 2{e}^{x} + ax^{2} - 2ax + a\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x{e}^{x} - 2{e}^{x} + ax^{2} - 2ax + a\right)}{dx}\\=&{e}^{x} + x({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)})) - 2({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)})) + a*2x - 2a + 0\\=&-{e}^{x} + x{e}^{x} + 2ax - 2a\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !