There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(\frac{(4 - aa)}{(a - 1)} + a)}{(\frac{(aa - 16)}{(a - 1)})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = - \frac{a^{2}}{(a - 1)(\frac{a^{2}}{(a - 1)} - \frac{16}{(a - 1)})} + \frac{4}{(a - 1)(\frac{a^{2}}{(a - 1)} - \frac{16}{(a - 1)})} + \frac{a}{(\frac{a^{2}}{(a - 1)} - \frac{16}{(a - 1)})}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( - \frac{a^{2}}{(a - 1)(\frac{a^{2}}{(a - 1)} - \frac{16}{(a - 1)})} + \frac{4}{(a - 1)(\frac{a^{2}}{(a - 1)} - \frac{16}{(a - 1)})} + \frac{a}{(\frac{a^{2}}{(a - 1)} - \frac{16}{(a - 1)})}\right)}{dx}\\=& - \frac{(\frac{-(0 + 0)}{(a - 1)^{2}})a^{2}}{(\frac{a^{2}}{(a - 1)} - \frac{16}{(a - 1)})} - \frac{(\frac{-((\frac{-(0 + 0)}{(a - 1)^{2}})a^{2} + 0 - 16(\frac{-(0 + 0)}{(a - 1)^{2}}))}{(\frac{a^{2}}{(a - 1)} - \frac{16}{(a - 1)})^{2}})a^{2}}{(a - 1)} + 0 + \frac{4(\frac{-(0 + 0)}{(a - 1)^{2}})}{(\frac{a^{2}}{(a - 1)} - \frac{16}{(a - 1)})} + \frac{4(\frac{-((\frac{-(0 + 0)}{(a - 1)^{2}})a^{2} + 0 - 16(\frac{-(0 + 0)}{(a - 1)^{2}}))}{(\frac{a^{2}}{(a - 1)} - \frac{16}{(a - 1)})^{2}})}{(a - 1)} + (\frac{-((\frac{-(0 + 0)}{(a - 1)^{2}})a^{2} + 0 - 16(\frac{-(0 + 0)}{(a - 1)^{2}}))}{(\frac{a^{2}}{(a - 1)} - \frac{16}{(a - 1)})^{2}})a + 0\\=& - 0\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !