There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {x}^{(1 - ln(x))}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = {x}^{(-ln(x) + 1)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {x}^{(-ln(x) + 1)}\right)}{dx}\\=&({x}^{(-ln(x) + 1)}((\frac{-1}{(x)} + 0)ln(x) + \frac{(-ln(x) + 1)(1)}{(x)}))\\=&\frac{-2{x}^{(-ln(x) + 1)}ln(x)}{x} + \frac{{x}^{(-ln(x) + 1)}}{x}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !