There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {e}^{(\frac{x}{2})}cos(3)x\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x{e}^{(\frac{1}{2}x)}cos(3)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x{e}^{(\frac{1}{2}x)}cos(3)\right)}{dx}\\=&{e}^{(\frac{1}{2}x)}cos(3) + x({e}^{(\frac{1}{2}x)}((\frac{1}{2})ln(e) + \frac{(\frac{1}{2}x)(0)}{(e)}))cos(3) + x{e}^{(\frac{1}{2}x)}*-sin(3)*0\\=&{e}^{(\frac{1}{2}x)}cos(3) + \frac{x{e}^{(\frac{1}{2}x)}cos(3)}{2}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !