There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {x}^{(1 - {x}^{2})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = {x}^{(-x^{2} + 1)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {x}^{(-x^{2} + 1)}\right)}{dx}\\=&({x}^{(-x^{2} + 1)}((-2x + 0)ln(x) + \frac{(-x^{2} + 1)(1)}{(x)}))\\=&-2x{x}^{(-x^{2} + 1)}ln(x) - x{x}^{(-x^{2} + 1)} + \frac{{x}^{(-x^{2} + 1)}}{x}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !