There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ \frac{x}{(\frac{{x}^{2}}{sin(x)})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{sin(x)}{x}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{sin(x)}{x}\right)}{dx}\\=&\frac{-sin(x)}{x^{2}} + \frac{cos(x)}{x}\\=&\frac{-sin(x)}{x^{2}} + \frac{cos(x)}{x}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{-sin(x)}{x^{2}} + \frac{cos(x)}{x}\right)}{dx}\\=&\frac{--2sin(x)}{x^{3}} - \frac{cos(x)}{x^{2}} + \frac{-cos(x)}{x^{2}} + \frac{-sin(x)}{x}\\=&\frac{2sin(x)}{x^{3}} - \frac{2cos(x)}{x^{2}} - \frac{sin(x)}{x}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !