There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ e^{x*3}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = e^{3x}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( e^{3x}\right)}{dx}\\=&e^{3x}*3\\=&3e^{3x}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 3e^{3x}\right)}{dx}\\=&3e^{3x}*3\\=&9e^{3x}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( 9e^{3x}\right)}{dx}\\=&9e^{3x}*3\\=&27e^{3x}\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( 27e^{3x}\right)}{dx}\\=&27e^{3x}*3\\=&81e^{3x}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !