There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ ln(sqrt(1 + {x}^{2}) - x) + 1\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = ln(sqrt(x^{2} + 1) - x) + 1\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( ln(sqrt(x^{2} + 1) - x) + 1\right)}{dx}\\=&\frac{(\frac{(2x + 0)*\frac{1}{2}}{(x^{2} + 1)^{\frac{1}{2}}} - 1)}{(sqrt(x^{2} + 1) - x)} + 0\\=&\frac{x}{(sqrt(x^{2} + 1) - x)(x^{2} + 1)^{\frac{1}{2}}} - \frac{1}{(sqrt(x^{2} + 1) - x)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !