There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ sqrt(\frac{{x}^{2}}{sin({x}^{(\frac{a}{cos(x)})})})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = sqrt(\frac{x^{2}}{sin({x}^{(\frac{a}{cos(x)})})})\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( sqrt(\frac{x^{2}}{sin({x}^{(\frac{a}{cos(x)})})})\right)}{dx}\\=&\frac{(\frac{2x}{sin({x}^{(\frac{a}{cos(x)})})} + \frac{x^{2}*-cos({x}^{(\frac{a}{cos(x)})})({x}^{(\frac{a}{cos(x)})}((\frac{asin(x)}{cos^{2}(x)})ln(x) + \frac{(\frac{a}{cos(x)})(1)}{(x)}))}{sin^{2}({x}^{(\frac{a}{cos(x)})})})*\frac{1}{2}}{(\frac{x^{2}}{sin({x}^{(\frac{a}{cos(x)})})})^{\frac{1}{2}}}\\=&\frac{1}{sin^{\frac{1}{2}}({x}^{(\frac{a}{cos(x)})})} - \frac{ax{x}^{(\frac{a}{cos(x)})}ln(x)sin(x)cos({x}^{(\frac{a}{cos(x)})})}{2sin^{\frac{3}{2}}({x}^{(\frac{a}{cos(x)})})cos^{2}(x)} - \frac{a{x}^{(\frac{a}{cos(x)})}cos({x}^{(\frac{a}{cos(x)})})}{2sin^{\frac{3}{2}}({x}^{(\frac{a}{cos(x)})})cos(x)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !