Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ sqrt(abs + (\frac{a}{x})){\frac{1}{x}}^{π}a\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = a{\frac{1}{x}}^{π}sqrt(abs + \frac{a}{x})\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( a{\frac{1}{x}}^{π}sqrt(abs + \frac{a}{x})\right)}{dx}\\=&a({\frac{1}{x}}^{π}((0)ln(\frac{1}{x}) + \frac{(π)(\frac{-1}{x^{2}})}{(\frac{1}{x})}))sqrt(abs + \frac{a}{x}) + \frac{a{\frac{1}{x}}^{π}(0 + \frac{a*-1}{x^{2}})*\frac{1}{2}}{(abs + \frac{a}{x})^{\frac{1}{2}}}\\=&\frac{-aπ{\frac{1}{x}}^{π}sqrt(abs + \frac{a}{x})}{x} - \frac{a^{2}{\frac{1}{x}}^{π}}{2(abs + \frac{a}{x})^{\frac{1}{2}}x^{2}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return