There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ log_{a}^{sin(3 - x)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = log_{a}^{sin(-x + 3)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( log_{a}^{sin(-x + 3)}\right)}{dx}\\=&(\frac{(\frac{(cos(-x + 3)(-1 + 0))}{(sin(-x + 3))} - \frac{(0)log_{a}^{sin(-x + 3)}}{(a)})}{(ln(a))})\\=&\frac{-cos(-x + 3)}{ln(a)sin(-x + 3)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !